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Abstract
Traditional acoustic diffusers are based on quarter-wavelength resonators built using slotted

panels. The use of this kind of resonators imply that these panels can hardly be manufactured
to work at low frequencies due to the resulting high thickness. Recently, the use of resonant
metamaterials based on Helmholtz resonators, i.e., metadiffusers, has been proposed in order
to reduce panel thickness. In this work we propose the use of plate and membrane resonators
to go one step further in managing sound reflection using ultrathin metasurfaces of deep
subwavelength dimensions.

Keywords Acoustics; Sound diffusers; acoustic diffusers; metasurfaces; membrane resonator;
plate resonator; metadiffuser; metamaterial; scattering;

Resumen
Los difusores acústicos tradicionales están basados en resonadores de cuarto de longitud de

onda construidos con paneles ranurados. Es por ello que dichos paneles difícilmente pueden
ser fabricados para trabajar en bajas frecuencias debido al elevado espesor resultante. Re-
cientemente se ha propuesto el uso de metamateriales resonantes basados en resonadores de
Helmholtz para reducir el espesor del panel, es decir, metadifusores. En este trabajo se pro-
pone el empleo de resonadores de placa y membrana para ir un paso más allá, consiguiendo
controlar la reflexión del sonido empleando metasuperficies ultraplanas con un espesor mucho
más pequeño que la longitud de onda.

Palabras clave Acústica; Difusores de sonido; difusores acústicos; metasuperficie; resonador
de membrana; metamaterial; metadifusor; scattering;
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1. Introducción

1.1. Presentación
El presente trabajo, Trabajo Final de Máster, se ha realizado para la obtención del título en

Máster en Ingeniería Acústica de la Universitat Politècnica de València, bajo la supervisión
de Noé Jiménez González.

En este documento se presenta el desarrollo de difusores acústicos basados en resonadores
de membrana y placa, planteando nuevas opciones en el campo de los difusores acústicos y
la acústica de recintos.

La estructura del documento consta de los siguientes puntos:
• Introducción.
• Estado del arte. Donde se describe y analiza la teoría actualmente establecida y

necesaria para el desarrollo del trabajo.
• Métodos. Donde se describen los métodos implementados para la realización del tra-

bajo.
• Resultados. En él se muestran los resultados obtenidos a partir de la aplicación de lo

métodos implementados.
• Conclusiones. Conceptos extraídos de los resultados y posibles mejoras o ampliaciones

del trabajo realizado.

1.2. Objetivos
Este trabajo trata de desarrollar y analizar el uso de resonadores de membrana y placa en

difusores, a continuación se detallan las características principales.

Dn
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nx=1

x
y

z
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ps(3,?)

Figura 1.1: Diseño conceptual de un metadifusor QR bidimensional con membrana o placa.
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2 Introducción

Para el desarrollo es necesario plantear las ecuaciones necesarias para considerar toda la
física implicada en el problema y así poder calcular el campo acústico producido por un difusor
con resonadores de placas, es decir, definir un modelo analítico. Debido a la complejidad se
implementará el método de la matriz de transferencia o TMM por sus siglas en inglés, con el
que se podrá obtener los parámetros físicos necesarios del sistema cavidad-placa teniendo en
cuenta las pérdidas viscotérmicas y viscoelásticas.

En este trabajo solo se muestran los cálculos cuando se utilizan placas elásticas. La diferen-
cia entre membranas y placas es que las primeras están sujetas con tensión y las segundas solo
soportadas sobre el difusor. Debido a que se pretende que se puedan realizar experimentos
que validen los resultados en el futuro, se ha prescindido de realizar los cálculos con tensión
ya que en la práctica es complejo aplicar la misma tensión en todas direcciones, que esta
se mantenga estable y sea la misma en todas las membranas. De todos modos se incluirá la
matemática necesaria para tener un modelo analítico de difusor con membranas.

El modelo analítico debe ser validado por otro modelo para verificar que los resultados son
correctos, en este caso se utilizará un modelo realizado con el método de los elementos finitos,
o FEM, para verificar que los resultados obtenidos con el modelo analítico son correctos.

Por último se optimizará el diseño del difusor mediante el uso algoritmos de optimización,
probando múltiples profundidades o tamaños de cavidad hasta obtener el diseño que maximice
los parámetros de difusión.



2. Estado del arte

2.1. Difusores acústicos
Un difusor acústico es un elemento pasivo que distribuye la energía acústica incidente tanto

en el espacio como en el tiempo de modo más o menos homogéneo, es decir, produce una refle-
xión no especular. Este elemento contribuye (generalmente) en la mejora de calidad acústica
de un recinto impidiendo la formación de ondas estacionarias, filtros peine o focalizaciones
en las frecuencias de trabajo del difusor.

Cuando un frente de onda incide sobre una superficie parte de la energía se absorbe y el resto
se refleja, esa reflexión puede ser especular (mismo ángulo de reflexión que el incidente), difusa
(múltiples direcciones) o una mezcla de ambas. Que se produzca alguna de esas reflexiones
depende tanto de la forma de la superficie como de la frecuencia de la onda incidente, en el
punto 2.3 se explica en detalle esta característica.

Dependiendo de la forma de un recinto es posible que se produzcan focalizaciones de la
presión acústica en algún punto del mismo debido a superficies planas o cóncavas. Como se
puede deducir si las ondas se reflejan por las superficies estas vuelven a encontrarse en algún
punto del recinto con diferentes retardos (desfasadas) produciendo en algunos puntos inter-
ferencias constructivas y destructivas perdiendo la información espectral que tenia la onda
inicialmente. Todos estos problemas pueden ser solventados, en parte, mediante la difusión
del frente de onda, distribuyendo la energía a lo largo del espacio minimizando el efecto de
las interferencias y evitando reflexiones especulares que producirían ondas estacionarias.

Existen diferentes configuraciones en las irregularidades y formas de la superficie del difusor
para obtener distintas distribuciones de energía y frecuencias (en el punto 2.4 se explican
algunas de estas configuraciones). Las más comunes son los difusores de Schroeder (1975, 1984,
1988, 1995), todos ellos aprovechan la diferencia de caminos de la onda incidente sobre las
cavidades del difusor para producir interferencias modificando el patrón polar de la reflexión,
es decir, produciendo difusión.

2.2. Aplicaciones de los difusores
Los problemas de ecos y eco flutter o aleteo (flutter echoes) pueden solucionarse mediante

la aplicación de materiales absorbentes pero existe una desventaja, esta solución reduce la
energía acústica en el recinto que, en la mayoría de las ocasiones, se necesita para que en la
zona de recepción se alcance un nivel de presión sonora aceptable. Para mantener la energía
acústica se puede hacer uso de difusores que, casi sin introducir absorción, permiten reducir
o eliminar los problemas de ecos tan sólo modificando el frente de onda.

Otros problemas que pueden solucionarse mediante el uso de difusores acústicos son los
filtros peine que se producen al coincidir en el espacio y en desfase el frente de onda original
y el reflejado.
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4 Estado del arte

Además, con el uso de difusores acústicos es posible mejorar la inteligibilidad del habla,
aumentar la sensación de espacialidad o distribuir homogéneamente el campo acústico sobre
el área de audiencia.

2.2.1. Ecos y eco flutter

Los ecos y eco flutter se producen cuando las superficies en las que incide una onda son
rígidas, es decir, tienen una reflexión predominantemente especular. El eco flutter es un
caso particular en el que la onda incidente es reflejada especularmente por una superficie
en dirección a otra superficie paralela donde sucederá lo mismo, esto se repetirá de forma
constante mientras el nivel de presión acústica decae debido a la absorción del aire, de las
superficies y la divergencia. Esto produce un eco con la tonalidad modificada, más cercano a
un sonido metálico.

Para solucionar los problemas de eco se debe romper el camino que recorre la onda para
cambiar su dirección o para distribuir su energía de forma espacial y temporal. Esto es posible
utilizando difusores acústicos.

2.2.2. Filtros peine

Es uno de los problemas habituales en recintos pequeños como salas de ensayo, estudios
de grabación, etc, nada impide que se puedan producir en recintos de mayores dimensiones
aunque es mucho más difícil que ocurra debido a la, presumiblemente, mayor complejidad de
las reflexiones.

Estos filtros provocan que en ciertos puntos del espacio la onda incidente se encuentra
con la reflejada, debido a reflexiones especulares, produciendo interferencias constructivas
y destructivas como se puede observar en la figura 2.1. Se puede observar en la figura que
aumentando la difusión de las reflexiones se consigue una respuesta en frecuencia en el pun-
to de escucha más plana, consiguiendo así que el sonido recibido no contenga coloraciones
producidas por el recinto.

Reflexión
especular

Reflexión
  difusa

10 ms(a) (b)

6 dB 6 dB6 dB 6 dB

Tiempo Frecuencia
100 Hz

Tiempo Frecuencia
10 ms 100 Hz

Figura 2.1: Ecograma y respuesta en frecuencia del campo acústico total para: (a) reflexión especular,
(b) reflexión difusa. Figura extraída de D’Antonio y Cox (2000).
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Figura 2.2: Estudio 1 de The Hit Factory, Nueva York. Diseñado por Studio Design Group LLC.

2.2.3. Zona libre de reflexiones

Los difusores son indispensables para conseguir zonas libres reflexiones o RFZ por sus
siglas en inglés, un aspecto muy importante en estudios de producción, mezcla o edición
de sonido, donde es necesario minimizar los efectos comentados anteriormente. La solución
que se puede plantear inicialmente para conseguir esta zona es cubrir todas las superficies
con absorbente pero esto produce que el sonido se perciba desde un único punto, algo que
es irreal, es necesario combinar el uso de absorción y difusión para mantener una energía
acústica aceptable con una imagen espacial del sonido lo más cercana a la realidad.

QRD

S

D

RFZ

Zona libre de reflexiones

AA

Mesa de mezclas

Altavoz

Figura 2.3: Diseño de un recinto para la mezcla de sonido con una zona libre de reflexiones (área
gris), con difusores QRD en la parte trasera. Figura extraída de D’Antonio y Cox (2000)



6 Estado del arte

2.3. Reflexión especular y difusa

La reflexión del sonido producida por una superficie puede ser especular, como la producida
por una superficie plana, o difusa, producida por superficies con irregularidades.

Qué se produzca difusión al incidir sobre un material depende principalmente de la fre-
cuencia (en el mismo orden que en la figura 2.4):

• Si la longitud de onda es muy grande frente a las irregularidades se producirá reflexión
especular.

λ >> 2a o λ >> 2h. (2.1)

• Si la longitud de onda es comparable a las dimensiones de las irregularidades el sonido
se difracta, dispersándose en múltiples direcciones en función de la geometría de la
superficie y produciendo difusión.

λ ≈ 2a y λ ≈ 2h. (2.2)

• Si la longitud de onda es muy pequeña frente a las dimensiones de las irregularidades
en la superficie del material se producirá concentración del sonido en una o varias
direcciones.

λ << 2a y λ << 2h. (2.3)

Figura 2.4: Comportamiento de la energía acústica al incidir en una superficie. Figura extraída de
T. Cox, Dalenback, y cols. (2006).

2.3.1. Difusión

El coeficiente de difusión indica cuan uniforme es la distribución de la energía acústica
reflejada por una superficie, es decir, a mayor valor del coeficiente (toma valores entre 0 y
1) mas homogénea es la energía tanto espacialmente como en términos de intensidad en la
distribución de las reflexiones.
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ϕ

I0
Intensidad incidente

I0(1− α)dΨ
Intensidad difusa total

Figura 2.5: Distribución de la energía al incidir en un difusor con un coeficiente de difusión igual
a 1. La intensidad difusa total es la suma de las intensidades de todo el campo difuso
(todos los rayos rojos).

Este coeficiente se puede entender mejor teniendo en mente el concepto de factor de direc-
tividad de las fuentes. En el caso de la difusión un valor igual a 1 indica que la energía se
distribuye homogéneamente en todas direcciones y, según se reduce el coeficiente, el patron
polar de las reflexiones se reduce produciendo lóbulos directivos.

2.3.2. Scattering

Su traducción literal es coeficiente de dispersión pero, debido a los malentendidos que se
puedan producir con el fenómeno de dispersión temporal que implica que la velocidad de fase
o grupo dependen de la frecuencia, se utiliza scattering o esparcimiento. Su utilidad es la de
relacionar la energía reflejada especularmente y la energía reflejada en otras direcciones.

Conociendo el coeficiente de scattering se puede conocer la energía de la reflexión especular
y la energía del las reflexiones difusas, pero sin conocer su distribución espacial o polar. Es útil
para conocer cuánto reduce un difusor la reflexión especular aunque no aporta información
sobre la dirección o direcciones del resto de reflexiones. El uso principal de este coeficiente se
encuentra en los algoritmos de programas de predicción acústica basados en acústica geomé-
trica (T. Cox, Dalenback, y cols., 2006), con este parámetro se consigue simular la cantidad
de reflexión especular y la cantidad de una serie de reflexiones en direcciones aleatorias tal
que su suma es igual a I0(1− α)s.

ϕ θ

ϕ = θ

I0
Intensidad incidente

I0(1− α)(1− s)
Intensidad reflejada especularmente

I0(1− α)s
Intensidad difusa total

Figura 2.6: Distribución de la energía al incidir en un difusor.
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2.4. Tipos de difusores
Existen múltiples tipos de difusores, cada uno de ellos con características concretas tanto

en respuesta acústica como en geometría, a continuación se describen una gran parte de ellos
y en concreto se define con mayor detalle los QRD debido a que es la base inicial de este
trabajo.

2.4.1. Quadratic residue sequence (QRD)

Este diseño fue definido por Schroeder (1979) basándose en la Ley de la Reciprocidad
Cuadrática establecida por Euler (criterio de Euler, 1748) y Legendre (símbolo de Legendre,
1798), demostrada después por Gauss (lema de Gauss, 1808 y 1818).

Los difusores QRD son los más utilizados en la actualidad en acústica de recintos, ya que
forman geometrías periódicas visualmente atractivas y un rendimiento optimo en medias y
altas frecuencias. Para realizar el diseño es necesario definir la frecuencia mínima a la que se
desea producir difusión, esto es clave ya que de ello depende el espesor del difusor: a menor
frecuencia, mayor espesor.

w

dn

x

y

Figura 2.7: Corte transversal de un difusor QRD con N = 7. Las finas laminas rígidas entre las
cavidades permiten mejorar la difusión en el caso de que la incidencia del sonido sea
tangencial al difusor.

El diseño de las profundidades depende de una secuencia numérica que se obtiene del
siguiente modo para un difusor unidimensional:

sn = n2 mod N, (2.4)

dónde n = 1, 2, 3, ..., N.

En el caso de un diseño bidimensional la secuencia numérica se obtiene con:

sn,m =
(
n2 +m2

)
mod N, (2.5)

dónde m = n = 1, 2, 3, ..., N.

Antes de realizar el módulo se puede restar a los vectores n y m el valor r0 = ⌈N/2⌉ para así
obtener el valor 0 en el centro de los vectores tal que los vectores comprendan desde −⌊N/2⌋
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a +⌊N/2⌋. Una vez realizadas las operaciones la secuencia numérica tendrá una apariencia
como las de la figura 2.8.

2 4 1 0 1 4 2

(a) Unidimensional.

4 6 3 2 3 6 4

6 1 5 4 5 1 6

3 5 2 1 2 5 3

2 4 1 0 1 4 2

3 5 2 1 2 5 3

6 1 5 4 5 1 6

4 6 3 2 3 6 4

(b) Bidimensional.

Figura 2.8: Un periodo de la secuencia de un QRD con N = 7.

Una vez se tienen las secuencias numéricas se deben obtener las profundidades de cada
cavidad teniendo en cuenta la frecuencia mínima a partir de la cual comenzará a producir
difusión. Esta profundidades se obtienen con:

dn =
snλ0

2N
, dn,m =

sn,mλ0

2N
. (2.6)

Por ejemplo, para una frecuencia de 1000 Hz, el valor de las profundidades quedaría tal
como se muestra en la figura 2.9.
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(a) Unidimensional.
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7.34 12.23 4.89 2.45 4.89 12.23 7.34

14.67 2.45 12.23 9.78 12.23 2.45 14.67

9.78 14.67 7.34 4.89 7.34 14.67 9.78

(b) Bidimensional.

Figura 2.9: Profundidades en centímetros de un QRD con N = 7

El ancho de la cavidad, w, teóricamente debe ser proporcional a la frecuencia máxima a la
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que se desea que el difusor no produzca modos cruzados tal que:

w = λmin/2. (2.7)

Aun así, a frecuencias mayores, la difusión sigue produciéndose correctamente, es decir, esta
frecuencia indica la frecuencia máxima a la que la difusión del panel será la teórica para un
QRD. Por lo que no es estrictamente necesario definir el ancho de la cavidad respecto a una
frecuencia máxima de trabajo.
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(a) 6 periodos.
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(b) 20 periodos.

Figura 2.10: Respuesta de un difusor QRD con N = 7 a 3000 Hz.

Las frecuencias críticas en un QRD indican cuando este responde como un panel plano, y
se encuentran en:

fc = mNf0, (2.8)

dónde m = 1, 2, 3, ...

Para evitar estas frecuencias críticas se debe usar un valor mínimo del número primo N,
tal que:

N >
c

2wf0
. (2.9)

2.4.2. Primitive root sequence (PRD)

Desarrollado por Schroeder (1984, cap. 13), este difusor se diseña de forma similar al QRD
pero en este caso utilizando las raíces primitivas tal que:

sn = rn mod N, (2.10)

dónde N es un número primo mayor que 2, n = 1, 2, ...N − 1 y r es la raíz primitiva de N .
El número de cavidades de este difusor es igual a N − 1. Por lo que el cálculo de las
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profundidades difiere ligeramente del de un QRD:

dn =
snλ0

2(N − 1)
. (2.11)

Sus frecuencias críticas se obtienen con:

fc =
mNf0
N − 1

, (2.12)

dónde m = 1, 2, 3, ....
Este tipo de difusor produce un filtro notch en la zona de la reflexión especular, eliminando

la reflexión especular alrededor de la frecuencia de diseño. Por lo general la reflexión especular
se ve reducida 20 log10(N).
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Figura 2.11: Respuesta de un difusor PRD con N = 37. Figura extraída de T. Cox y D’Antonio
(2016).

2.4.3. Maximum-Length sequences (MLS)
  Desarrollado por Schroeder (1975), este tipo de difusor hace uso, como su propio nombre

indica, de las secuencias MLS para introducir huecos o no en una superficie tal que el resultado
quedaría como la figura 2.12.

x

y

Figura 2.12: Corte transversal de un periodo de un difusor MLS con N = 7.

Este tipo de difusor solo tiene dos valores de profundidad, 0 cuando el valor en la secuencia
MLS es 0 y d cuando el valor en la secuencia es 1:

d = λ/4, (2.13)

dónde λ es la longitud de onda de la frecuencia de diseño.
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En los difusores MLS las frecuencias de resonancia solo se encuentran en los múltiplos pares
de la frecuencia de diseño y, para que el cálculo de estas frecuencias sean válidas y el difusor
funcione correctamente, la profundidad siempre debe ser mayor que el ancho de las cavidades.

La respuesta de este difusor a la frecuencia de diseño es similar al QRD a excepción del
lóbulo central que sufre una reducción de nivel de 10 log10(N + 1) dB. Su banda de trabajo
comprende solo una octava alrededor de la frecuencia de diseño y múltiplos impares de esta.

2.4.4. Index sequences

Desarrollado por Schroeder (1995), este tipo de difusor se realiza con raíces primitivas como
el diseño PRD pero del siguiente modo:

n = rsn mod N, (2.14)

dónde n = 1, 2, 3, ..., N es el número primo generador, sn es la secuencia de números buscada
o función de índice y r es la raíz primitiva de N .

Las profundidades de cada cavidad se obtienen del mismo modo que los difusores PRD
(ecuación 2.11).

Este tipo de diseño tiene una banda de trabajo definida entre su frecuencia de diseño y
N−2 veces esta. Ademas tiene la peculiaridad de que en las cavidades donde la profundidad es
máxima el coeficiente de reflexión es 0 y esta se rellena con material absorbente, produciendo
finalmente que el difusor absorba 20 log10(N − 1) de la energía recibida (ver figura 2.13).

Absorbente

x

y

Figura 2.13: Corte transversal de un periodo de un difusor Index con N = 7 y r = 3.

2.4.5. Ternary-Quadriphase sequences

Desarrollado por T. Cox, Angus, y D’Antonio (2006), este tipo de difusores son híbridos,
utilizan absorbentes para reducir la reflexión especular y superficies rígidas para difundir el
resto. Este tipo de diseño consigue reducir aun más la reflexión especular al producir mayores
interferencias en la reflexión.
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2.4.5.1. Ternary

Esta secuencia, ternaria, se basa en las secuencias MLS pero consigue una reducción lige-
ramente mayor de la reflexión especular, de 20 log10(N/2) y todos de lóbulos tienen la misma
amplitud en la frecuencia de diseño y sus múltiplos impares. Esto se consigue gracias a que
en lugar de secuencias de números de valor 0 y 1, se utilizan secuencias -1, 0 y 1, consiguiendo
así coeficientes de reflexión negativos, cero y positivos.

El difusor solo tiene una profundidad de cavidad, λ0/4 y esta se ubica en las cavidades
correspondientes al valor -1 en la secuencia numérica, las cavidades con valor 0 son superficies
absorbentes y las cavidades con valor 1 son superficies rígidas o reflectantes, ambas a la misma
profundidad dn = 0.

La secuencia numérica se obtiene a partir de dos secuencias MLS de orden impar, una
complementaria de la otra, se calcula la covarianza de la correlación cruzada de ambas y a
partir de esta se obtiene la secuencia ternaria. Explicado matemáticamente paso a paso, la
secuencia MLS que se debe generar debe tener una longitud de N = 2m−1 donde m ̸= 04, es
decir, m ̸= 4, 8, 12, ..., después de obtiene su complementaria copiando muestras de la original
a intervalos de ∆n = 2k + 1 o ∆n = 22k − 2k − 1 donde k es un número entero mayor que 0.
Teniendo los valores de m y k se obtiene máximo común divisor e = mcd(m, k), que servirá
para verificar que m/e es un número impar y por tanto se producirá una distribución de
valores de la covarianza cruzada correcta. Esta covarianza tendrá 3 posibles valores, -1, 0 y 1
con la siguiente distribución:

Sab =


−1 + 2(m+e)/2 se repite 2m−e−1 + 2(m−e−2)/2 veces
−1 se repite 2m − 2(m−e) − 1 veces
−1− 2(m+e)/2 se repite 2m−e−1 + 2(m−e−2)/2 veces

(2.15)

Una vez se tiene la covarianza Sab la secuencia numérica se obtiene con:

sn = (Sab + 1) 2−(m+e)/2 (2.16)

Onda 
incidente

6/4

Figura 2.14: Difusor ternario basado en la secuencia {1,1,0,1,0,0,-1}. Figura extraída de T. Cox,
Angus, y D’Antonio (2006).
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2.4.5.2. Quadriphase

Este tipo de diseño es similar al ternario pero añadiendo una profundidad más, la secuencia
ahora se conforma con los valores -1, 0, 1 y ξ, con ello se consigue mejorar la respuesta de los
difusores ternarios en las frecuencias múltiplos pares de la frecuencia de diseño.

Este nuevo valor ξ sustituirá algunos valores -1 y 1, nunca al 0, y para ello se utilizan
algoritmos de optimización que prueben cuál es la mejor distribución del nuevo valor.

Además de la profundidad d1 = λ0/4 que se aplica al valor -1, la profundidad aplicada al
valor ξ es menor que d1 y se calcula como:

C1 =
1

N
, C2 =

Ni

Ni+1
, (2.17)

d2 = d1Cx, (2.18)

dónde N es cualquier número primo, Ni también es cualquier número primo, Ni+1 es el si-
guiente número primo de Ni, Cx es uno de los dos cálculos de 2.17 y d2 es la profundidad
correspondiente a ξ.

Las frecuencias críticas de este diseño se encuentran en:

fc =
2f0m

Cx
, (2.19)

dónde m es el orden de la secuencia MLS y se debe cumplir la condición de que m/Cx sea
un número entero.

Figura 2.15: Comparación de la respuesta de difusores: - - -, ternario; -·-·-, cuadrifase, ·····,
panel plano. Figura extraída de T. Cox, Angus, y D’Antonio (2006).

2.4.6. Difusores volumétricos

Constituidos como tal por Angus y cols. (2008) y Hughes y cols. (2010), este tipo de difu-
sores aprovechan el perfil de formas geométricas como semicilindros, semiesferas, pirámides y
otras formas más complejas para conseguir una difusión relativamente uniforme. En el punto
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siguiente, cristales de sonido, se analiza un caso particular de estos.
Los difusores volumétricos permiten, sin un gran espesor, trabajar en frecuencias menores

a las habituales en difusores de Schroeder, en este caso la dimensión que influye en la difusión
de las frecuencias cercanas a la de diseño es la superficie que cubre.

2.4.6.1. Piramides y triángulos

También triángulos y cuñas, su difusión es fuertemente dependiente del ángulo formado
entre la base y las paredes del triángulo, χ, tal como se puede ver en la figura 2.16.

Si el ángulo formado por χ es menor o igual a 30◦ produce 2 reflexiones predominantes en
±2χ (figura 2.17), consiguiendo un filtro notch en un rango de frecuencias más amplio que los
difusores PRD pero solo en ángulos de incidencia alrededor de la normal. Si 30◦ < χ < 45◦ se
siguen produciendo dos reflexiones en ±2χ pero también otras dos en ±(180− 4χ). χ = 45◦

es un ángulo crítico que produce la misma respuesta que un panel plano. Con 45◦ < χ < 54◦

solo se producen dos reflexiones en ±(180− 4χ).

@ = 30°

30° < @ < 45°

@ > 50°@ = 45°

@

Figura 2.16: Trazado de rayos sobre parejas de triángulos. Figura extraída de T. Cox y D’Antonio
(2016).

Desde χ = 54◦ en adelante aumenta considerablemente la reflexión interna de los rayos
siendo necesario un análisis de trazado de rayos para conocer las direcciones de las reflexiones.
Cuando χ > 85◦ vuelve a suceder un comportamiento similar que en χ = 45◦ pero con menor
energía especular. Es importante señalar que a ángulos tan altos el comportamiento del
campo entre los triángulos comienza a ser el mismo que un resonador produciendo absorción
por efecto de este.
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Figura 2.17: Difusión en la perpendicular de dos triángulos para tres ángulos: 30◦, 40◦ y 45◦. Figura
extraída de T. Cox y D’Antonio (2016).
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2.4.6.2. Superficies convexas

Los semicilindros, semiesferas o superficies convexas, pueden parecer difusores óptimos
cuando solo hay un elemento (figura 2.18) pero no es así, la distribución temporal es la misma
que un panel plano (figura 2.19) por lo que se seguirían produciendo problemas de aleteo o
de filtro de peine. Además, cuando hay un solo elemento, un semicilindro o una semiesfera,
el comportamiento es similar a una fuente puntual pero para ello el tamaño necesario es
excesivo, así que la solución pasa por un array de elementos más pequeños.

5 10 (dB)
–90

–60

–30

0
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90

Figura 2.18: Difusión de un semicilindro de 1 metro de diámetro d para las frecuencias: -·-·- 40
Hz (λ = 8.5d); — 400 Hz (λ = 0.85d); - - - 4000 Hz (λ = 0.085d). Figura extraída de
T. Cox y D’Antonio (2016).
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Figura 2.19: Presión incidente y reflejada por un semicilindro. Figura extraída de T. Cox y D’Antonio
(2016).

Configurando un array de elementos se mejora la difusión temporal, además se puede
calcular fácilmente la respuesta de un difusor formado por múltiples elementos si se tiene la
respuesta de uno de ellos tal que:

pa(Ψ, θ) = p1(Ψ, θ)

∞∑
m=−∞

δ

(
(sinΨ+ sin θ)− mλ

W

)
(2.20)

dónde Ψ es el ángulo de incidencia, θ es el ángulo de reflexión, pa es la presión del array, p1
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es la presión de un solo elemento, m es el número de elementos en el array, λ es la longitud
de onda, W es la distancia entre centros de los elementos y δ es la función delta.

Como se puede observar en la figura 2.20 la difusión temporal de un array de elementos
mejora drásticamente en comparación con un solo elemento y por tanto siendo eficaz como
difusor acústico. Si además se alterna el tamaño de los elementos se consigue una mejora en
el patrón polar del difusor.
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Figura 2.20: Presión incidente y reflejada por un array de semicilindros. Figura extraída de T. Cox
y D’Antonio (2016).

2.4.7. Cristales de sonido

Los cristales de sonido o cristales fonónicos (Phononic crystals) han sido desarrollados
inicialmente por Sánchez-Pérez y cols. (1998), y posteriormente han sido estudiados para su
uso como difusores acústicos en Hughes y cols. (2010) y Redondo y cols. (2011).

Se denominan así debido al uso de cristales en el campo de la óptica para manipular la
dirección y energía de los fotones. Los cristales son estructuras periódicas que debido a sus
características interaccionan con ciertas longitudes de onda. En el campo de la acústica estos
cristales están formados por cilindros y dependiendo de su distribución y los radios de los
mismos producen absorción, difusión u otros efectos como guía de ondas (Miyashita, 2005).
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Figura 2.21: Difusores basados en cristales de sonido y sus coeficientes de difusión. Figuras extraídas
de Redondo y cols. (2011).
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En el ejemplo de la figura 2.21 se observan dos distribuciones diferentes de los cilindros.
En el de la derecha los cilindros tienen un radio de 3.5 cm, distancia entre centros de 8 cm
y un total de 4 columnas de cilindros por 40 filas. El de la izquierda es bi-periódico, es decir
tiene 2 grupos diferentes de distancias verticales entre cilindros, la distancia entre columnas
es la misma, 8 cm, pero entre filas se alterna, las 10 primeras tienen una distancia de 8.8
cm, las siguientes 10 de 7.2 cm y esto se repite con las 20 restantes. Ambos difusores tienen
un espesor total de 32 cm. Como se puede observar, al introducir varias periodicidades se
consiguen excelentes resultados en baja frecuencia que con los difusores de Schroeder es difí-
cilmente alcanzable.

Este tipo de difusores aun se encuentran en investigación y por tanto no hay una teoría
consolidada que permita predecir el comportamiento del difusor, solo es posible analizarlo
a partir de métodos numéricos como el de Diferencias Finitas en el Dominio del Tiempo o
FDTD por sus siglas en inglés.

2.4.8. Metadifusores

Los metadifusores se basan en diseñar difusores utilizando el concepto de metamaterial.
La definición de metamaterial es algo confusa en la literatura pero todas las definiciones
concuerdan en que se trata de obtener un medio o material formado por varios componentes
que en su conjunto tienen propiedades inusuales frente a las propiedades de estos componentes
por separado. En general, los metamateriales son estructuras resonantes y su diseño permite
trabajar en longitudes de onda inferiores a las de los diseños estándar, lo que en inglés se
denomina subwavelength.

A continuación se exponen los detalles más relevantes en el caso de difusores con resona-
dores de Helmholtz. Este trabajo tratará de aplicar el mismo principio pero con resonadores
de placa.

Este tipo de difusores contienen resonadores de Helmholtz dentro de las cavidades del
difusor, permitiendo así reducir su tamaño. En Jiménez y cols. (2017) se realizó el diseño de
varios difusores de este tipo, basándose en secuencias de residuo cuadrático, raíz primitiva y
ternaria, se agregaron los resonadores y mediante el cálculo TMM (punto 3.1.2) y FEM se
obtuvieron los resultados.

Los resultados mostrados en el trabajo son los obtenidos una vez realizada la optimización
de la geometría tal como se explica en el punto 3.3.
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(a) Diseño (b) Respuesta polar.

Figura 2.22: Diseño y respuesta de un QR-metadifusor 17 veces más fino que el diseño QRD. (Fre-
cuencia de diseño de 500 Hz). Figura extraída de Jiménez y cols. (2017)

En la figura 2.22 se puede observar que con un metadifusor QR 17 veces mas fino que un
QRD se obtiene el mismo resultado. En este caso la frecuencia de diseño es de 500 Hz y el
análisis a 2000 Hz, el grosor del difusor en el caso del diseño QRD es de 34 cm y en el caso
del metadifusor de 2 cm. En el resto de secuencias se obtienen resultados similares frente a
sus diseños estándar tal como se puede ver en Jiménez y cols. (2017).

Estos diseños finalmente se estudiaron experimentalmente, fabricándolos mediante impre-
sión 3D y los resultados obtenidos son muy similares a los estimados mediante el cálculo,
estas validaciones del modelo teórico mediante experimentación pueden ser analizadas en el
trabajo de Ballestero y cols. (2019).





3. Métodos

Los métodos utilizados en este trabajo para desarrollar los difusores con resonadores de
placa o membrana son: el cálculo teórico, con el que se define toda la matemática necesaria
para realizar los modelos analíticos, el cálculo numérico, en concreto FEM (Finite Element
Method), que será necesario para validar el modelo analítico y por último la optimización
que se utilizará para mejorar los diseños de los difusores y obtener los mejores resultados en
las frecuencias deseadas.

3.1. Cálculo teórico
Para realizar el cálculo teórico de la respuesta de un difusor se debe calcular en primer lugar

la impedancia acústica de cada elemento del mismo, tanto de la cavidad como de la placa o
membrana, para ello se deberán tener en cuenta las pérdidas viscotérmicas en las cavidades y
viscoelásticas en las placas o membranas. Una vez se tienen estas impedancias es el momento
de analizar el conjunto cavidad-placa, para ello se hará uso del método de la matriz de
transferencia o TMM por sus siglas en inglés. A partir de esta matriz se pueden obtener
los coeficientes de reflexión de cada conjunto cavidad-placa y con ellos es posible calcular la
repuesta en campo lejano del difusor (zona de Fraunhofer) mediante una transformada de
Fourier bidimensional de la distribución espacial de coeficientes de reflexión.

A continuación se describen todos los cálculos necesarios para obtener los parámetros des-
critos.

3.1.1. Impedancia acústica de los resonadores

3.1.1.1. Resonadores de cuarto de longitud de onda (QWR)

Un resonador de cuarto de longitud de onda es un tubo en el que su longitud es la cuarta
parte de la longitud de onda a la que resuena (figura 3.3).

La impedancia acústica característica de un medio se calcula como:

Z = ρc =
√

ρK, (3.1)

dónde ρ es la densidad del medio contenido en la cavidad en kg/m3, c la velocidad de propa-
gación del sonido en ese medio en m/s y K es el módulo de Bulk.

Para el caso de un resonador de cuarto de longitud de onda (QWR) es necesario tener en
cuenta la superficie de la sección de la cavidad:

Z ′ =
Z

S
, (3.2)

21
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dónde S es el área de la sección de la cavidad.

3.1.1.2. Membranas o placas elásticas

h

a

r

Figura 3.1: Placas o membranas.

Placa circular
Considerando solo los modos axisimétricos el cálculo analítico para obtener la impedancia

acústica de una placa circular fija en su contorno es:

Zp(ω) = − iωρh

S

J0(kmr)I1(kmr) + J1(kmr)I0(kmr)

J2(kmr)I1(kmr)− J1(kmr)I2(kmr)
, (3.3)

dónde km es el número de onda en la placa y r es el radio de la placa en metros.

km =

√√√√ω

√
ρh

Dp
, Dp =

Eh3

12(1− ν2)
, (3.4)

dónde h es el espesor de la placa en metros, ρ es la densidad en kg/m3, E es el módulo de
Young en pascales, ν es el coeficiente de Poisson y Dp es la rigidez a la flexión.

Placa cuadrada

Modelo completo

Desarrollado por Sung y Jan (1997), este cálculo permite obtener la impedancia de una
placa cuadrada para cualquier modo de vibración m,n.
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Zp(ω) =

[
iω

∫ a

0

∫ a

0

( ∞∑
m=1

∞∑
n=1

∫ a
0

∫ a
0 Xm(x)Yn(y)dxdy

D(I1I2 + 2I3I4 + I5I6)− ρhω2I2I6

)
dxdy

]−1

, (3.5)

dónde Xm(x) y Ym(y) son las funciones:

Xm(x) = G

(
λmx

a

)
− G(λm)

H(λm)
H

(
λmx

a

)
, (3.6)

Yn(y) = G

(
λny

a

)
− G(λn)

H(λn)
H

(
λny

a

)
, (3.7)

dónde G(u) = cosh(u)− cos(u), H(u) = sinh(u)− sin(u), y λm y λn deben cumplir la condi-
ción cosh(λ) cos(λ) = 1. La funciones Ix son:

I1 =

∫ a

0
Xm(x)

∂4Xm(x)

∂x4
dx, I2 =

∫ a

0
Y 2
n (y)dy, (3.8)

I3 =

∫ a

0
Xm(x)

∂2Xm(x)

∂x2
dx, I4 =

∫ a

0
Yn(y)

∂2Yn(y)

∂y2
dy, (3.9)

I5 =

∫ a

0
Yn(y)

∂4Yn(y)

∂y4
dy, I6 =

∫ a

0
X2

m(x)dx. (3.10)

Las frecuencias de resonancia se obtienen con:

ωm,n =

√
Dp(I1I2 + 2I3I4 + I5I6)

ρhI2I6
, (3.11)

dónde Dp es la rigidez a la flexión calculada del mismo modo que en la ecuación 3.4, ρ es la
densidad de la placa en kg/m3 y h es el espesor de la misma en metros.

Modelo aproximado

En el caso de la placa cuadrada es posible simplificar el cálculo mediante aproximación
únicamente válido en las frecuencias alrededor de la primera frecuencia de resonancia:

Zp(ω) =
1

iωCp
+ iωMp, (3.12)
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dónde Cp y Mp son la compliancia y la masa acústica calculadas como:

Cp = 3.73 · 10−4 a
6

Dp
, Mp = 2.06

ρh

a2
, (3.13)

dónde a es el tamaño de lado del cuadrado en metros y Dp es la rigidez a la flexión calculada
como en la ecuación 3.4, ρ es la densidad de la placa en kg/m3 y h es el espesor de la misma
en metros.

La frecuencia de resonancia de la placa cuadrada se obtiene con ωp =
√

1/(MpCp).

Membrana cuadrada

En el caso de utilizar una membrana se debe tener en cuenta la tensión aplicada a la misma
por lo que los cálculos son diferentes a los anteriores.

Modelo completo

El cálculo completo tanto de la impedancia como de las frecuencias de resonancia para una
membrana cuadrada:

Zmem =

[
iωa2

∞∑
m=1

∞∑
n=1

[1− (−1)m]2 [1− (−1)n]2

ρh
(
ω2
m,n − ω2

)
m2n2π4

]−1

, (3.14)

dónde ω es la frecuencia angular para la cual se calcula la impedancia, a es el tamaño de lado
de la membrana, h es el espesor de la membrana, ρ es la densidad de la membrana y ωm,n es
la frecuencia de resonancia en el modo (m,n) calculada como:

ωm,n =
π

a

√
T

ρ
(m2 + n2), (3.15)

dónde T es la tensión aplicada a la membrana.

Se debe tener en consideración que en la practica la tensión sufre muchas variaciones ha-
ciendo que este calculo sea comparable con una membrana real solo en los primeros instantes
y siempre que la tensión se aplique del mismo modo en todas direcciones.

Modelo aproximado

Este cálculo es aproximado, al igual que el de una placa cuadrada, y solo es valido para las
frecuencias alrededor de la primera resonancia.

Zmem(ω) =
1

iωCmem
+ iωMmem, (3.16)
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dónde Cmem y Mmem son la compliancia y la masa acústica calculadas como:

Cmem = 0.035
a4

T
, Mmem = 1.44

ρh

a2
, (3.17)

dónde a es el tamaño de lado del cuadrado en metros, ρ es la densidad de la membrana en
kg/m3 y h es el espesor de la misma en metros.

La frecuencia de resonancia de la membrana cuadrada se obtiene con wmem =
√
1/(MmemCmem).

Este cálculo solo es válido cuando la tensión es mucho mayor que la rigidez a la flexión,
T ≫ Eh3/12(1− ν2).

3.1.2. Método de la matriz de transferencia

Este método permite realizar los cálculos de una forma modular, donde se van integrando
las diferentes capas para conocer el comportamiento de, por ejemplo, un difusor acústico con
placa donde la cavidad es una capa y la placa otra.

Inicialmente se obtienen las relaciones de las magnitudes acústicas en diferentes posiciones
de un material asumiendo solo ondas planas longitudinales, tal como se puede ver en la figura
3.2. Por medio de la ecuación de Euler (conservación de momento) y tomando el campo
acústico total como la superposición de dos ondas, se puede calcular la presión y la velocidad
de partícula en un punto dado:

p(x) = PAe
−ikx + PBe

ikx, (3.18)

vx(x) =
PA

Z
e−ikx − PB

Z
eikx, (3.19)

dónde Z es la impedancia acústica específica, k es el número de onda y PA y PB son las
amplitudes de las dos ondas.

Para obtener las amplitudes de las dos ondas se define la presión y la velocidad de partículas
en ambos extremos del conjunto, primero en x = 0 y después en x = L:

p(x)|x=0 = PA + PB, (3.20)

Zvx(x)|x=0 = PA − PB. (3.21)

Para x = L y teniendo en cuenta la relación de Euler (eix = cosx+ i sinx):

p(x)|x=L = (PA + PB) cos(kL)− i(PA − PB) sin(kL), (3.22)

vx(x)|x=L =
PA − PB

Z
cos(kL) − i

PA − PB

Z
sin(kL). (3.23)
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Combinando las ecuaciones 3.20 y 3.21 en las ecuaciones 3.22 y 3.23:

p(x)|x=L = cos(kL) p(x)|x=0 − iZ sin(kL) vx(x)|x=0 , (3.24)

vx(x)|x=L = cos(kL) vx(x)|x=0 − i
1

Z
sin(kL) p(x)|x=0 . (3.25)

Ahora se tienen las condiciones para expresar las ecuaciones en forma matricial, que invir-
tiendo la matriz, queda: p

vx


x=0

=

 cos(kL) iZ sin(kL)

i sin(kL)/Z cos(kL)

 p

vx


x=L

. (3.26)

Obteniendo así una matriz de propagación que permite calcular los valores de presión y
velocidad de partícula para cualquier valor de L.

T1 T2 T3

Pie
+jkx

Re−jkx

Te+jkx

vx|x=0

p|x=0

vx|x=L

p|x=L

x = 0 x = L

P1e
+jkeffx

P2e
−jkeffx

Figura 3.2: Estructura y detalle de un bloque del método de la matriz de transferencia T.

3.1.2.1. Matriz de transferencia total

Para una estructura que puede estar compuesta de varias subestructuras (figura 3.2) se
define la matriz de transferencia total. Esta matriz relaciona la presión p y la velocidad de
partícula vx en el inicio de la estructura, x = 0, y en el final de la misma, x = L, quedando
el sistema definido como:



3.1. Cálculo teórico 27

 p

vx


x=0

=

T11 T12

T21 T22

 p

vx


x=L

= T

 p

vx


x=L

. (3.27)

Por lo que compactando las ecuaciones, una estructura formada por N subestructuras
diferentes tendrá una matriz de transferencia total:

T =
N∏

n=1

Tn, (3.28)

dónde Tn son las matrices de cada una de las subestructuras, todas ellas con la forma de la
ecuación 3.26.

3.1.2.2. Parámetros de la matriz de transferencia total

Una vez se tiene caracterizado un sistema con la matriz de transferencia total, T, se pueden
obtener los parámetros acústicos del sistema completo.

3.1.2.2.1. Número de onda

Como se puede observar en la ecuación 3.26, el número de onda se despeja de la misma tal
que:

k =
1

L
cos− 1

(
T11 + T22

2

)
. (3.29)

3.1.2.2.2. Impedancia acústica característica

Del mismo modo se puede extraer la impedancia acústica característica de la ecuación 3.26
como:

Z =

√
T12

T21
. (3.30)

3.1.2.2.3. Densidad y módulo de Bulk

La densidad y el módulo de Bulk se obtienen con:

K(ω) = Z
ω

k
, ρ(ω) = Z

k

ω
, (3.31)

dónde Z y k son los obtenidos en los dos puntos anteriores.
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3.1.2.2.4. Impedancia acústica específica

La impedancia acústica característica y la especifica son iguales cuando el medio es homo-
géneo y se propaga por él una onda plana, en este caso tenemos caracterizado un sistema no
homogéneo y por tanto la impedancia específica difiere de la característica.

La impedancia acústica específica se puede obtener a partir de la impedancia del medio,
Z0, y el coeficiente de reflexión (punto 3.1.4) asumiendo que no existe transmisión:

Z ′ = Z0

(
1−R

1 +R

)
. (3.32)

3.1.3. Pérdidas viscotérmicas en las cavidades y viscoelásticas en las placas y
membranas

Cuando un frente de ondas interactúa con un medio contenido dentro de determinadas
geometrías se alteran las características del medio siendo estas dependientes de la frecuencia
y la forma del continente. Estas alteraciones son las pérdidas viscotérmicas y viscoelásticas,
que con ellas se corrigen los parámetros originales y reales del medio para obtener los valores
complejos y dependientes de la frecuencia y la geometría.

Los parámetros que tienen en cuenta las pérdidas pasaran a llamarse parámetros efectivos.

3.1.3.1. Cavidades

3.1.3.1.1. Densidad y módulo de Bulk efectivos

El cálculo tanto de la densidad como del módulo de Bulk efectivos para distintas formas
de cavidad ha sido desarrollado por Stinson (1991) basándose en los trabajos de Kirchhoff
(1868) y Rayleigh (1894).

r

a

b

a

Figura 3.3: Cavidades circular y rectangular.

Cavidad con sección circular

ρeff(ω) = ρ0

[
1− 2J1(rGρ(ω))

rGρ(ω)J0(rGρ(ω))

]−1

, (3.33)

Keff(ω) = K0

[
1 + (γ − 1)

2J1(rGK(ω))

rGK(ω)J0(rGK(ω))

]−1

, (3.34)
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dónde ρ0 es la densidad del medio en kg/m3, K0 es el módulo de Bulk del medio en Pascales,
Jn es el n-ésimo orden de la función de Bessel, γ es la relación de los calores específicos del
medio (calor específico a presión constante entre calor específico a volumen constante), ω es
la frecuencia angular y los parámetros Gρ y GK son:

Gρ(ω) =

√
iω

v
, GK(ω) =

√
iω

v′
, (3.35)

dónde v = µ/ρ0 es la viscosidad cinemática en m2/s, µ es la viscosidad dinámica en Pa·s,
v′ = µ/(Prρ0) y Pr = Cpµ/κ es el número de Prandtl.

Cavidad con sección rectangular

ρeff(ω) = ρ0
ρ0a

2b2

4G2
ρ(ω)

∞∑
i=1

∞∑
j=1

[
α2
mβ2

n

(
α2
m + β2

n +G2
ρ(ω)

)]−1

, (3.36)

Keff(ω) = K0
1

γ −
4G2

K(ω)(γ − 1)

a2b2

∞∑
i=1

∞∑
j=1

[
α2
mβ2

n

(
α2
m + β2

n +G2
K(ω)

)] , (3.37)

dónde ρ0 es la densidad del medio en kg/m3, ω es la frecuencia angular, P0 es la presión
atmosférica en Pascales, γ es la relación de los calores específicos del medio (calor específico
a presión constante entre calor específico a volumen constante), a = lx/2 y b = ly/2 siendo
lx y ly las dimensiones del rectángulo en metros y los parámetros αm y βn son:

αm = (m+ 1/2)π/a, βn = (n+ 1/2)π/b, (3.38)

dónde m y n son números enteros (0,1,2,...,∞) siendo estos los puntos de integración: a mayor
valor, mayor precisión en el cálculo.

3.1.3.1.2. Número de onda efectivo

El número de onda efectivo se obtiene a partir de la velocidad de propagación y esta a
partir de los parámetros efectivos calculados anteriormente como:

keff(ω) =
ω

ceff(ω)
, ceff(ω) =

√
Keff(ω)

ρeff(ω)
. (3.39)

3.1.3.1.3. Impedancia acústica característica efectiva
La impedancia característica efectiva debe obtenerse mediante los parámetros efectivos ya
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calculados quedando del siguiente modo:

Zeff(ω) =
√
ρeff(ω)Keff(ω). (3.40)

Para el caso de un resonador de cuarto de longitud de onda (QWR) se debe tener en cuenta
la superficie de la sección de la cavidad:

Z ′
eff(ω) =

Zeff(ω)

S
, (3.41)

dónde S es la superficie de la sección de la cavidad en m2.

3.1.3.1.4. Forma matricial
Para utilizar estos parámetros en el método de la matriz de transferencia se da forma matricial
a la respuesta de una cavidad, a partir de la ecuación 3.26, tal que:

Tc =

 cos(keffL) iZ ′
eff sin(keffL)

i sin(keffL)/Z
′
eff cos(keffL)

 . (3.42)

3.1.3.2. Placas o membranas elásticas

3.1.3.2.1. Densidad y módulo de Young efectivos

La densidad y el módulo de Young sufren variaciones frente a la frecuencia, estas variaciones
son complejas y tendrán efecto en la fase y por tanto, finalmente, en el coeficiente de reflexión.
El cálculo a partir de los valores reales es el siguiente:

Eeff = E0 + iωηE , (3.43)

ρeff = ρ0 −
iηρ√
ω
, (3.44)

dónde ηE es el factor de pérdidas del módulo de Young de la membrana o placa y ηρ es el
factor de pérdidas de la densidad de la membrana o placa.

3.1.3.2.2. Impedancia acústica característica efectiva

El cálculo de la impedancia característica efectiva de una placa o membrana es el definido
en el punto 3.1.1.2 utilizando los valores de densidad y módulo de Young efectivos calculados
en el punto anterior.

3.1.3.2.3. Forma matricial

Debido a que la placa o membrana es un elemento resonante en serie, es decir, tiene el
mismo medio a ambos lados, la matriz se simplifica.
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Teniendo en cuenta que la velocidad de partícula es la misma en ambos lados de la placa
o membrana la impedancia del resonador será:

Zm =
p(x)|x=0 − p(x)|x=h

v(x)|x=h

. (3.45)

Por tanto, las ecuaciones que relacionan presión y velocidad:

p(x)|x=0 = p(x)|x=h + Zm v(x)|x=h , (3.46)

v(x)|x=0 = v(x)|x=h . (3.47)

Finalmente, la forma matricial para el caso de un resonador de placa o membrana es:

Tm =

1 Zm

0 1

 . (3.48)

3.1.4. Cálculo del coeficiente de reflexión

Cuando se tiene una cavidad con el extremo final rígido la velocidad de partícula en ese
punto es 0 (vx(x)|x=L = 0), por lo que utilizando la ecuación 3.27:

p(x)|x=0 = T11 p(x)|x=L , (3.49)

vx(x)|x=0 = T21 p(x)|x=L . (3.50)

El coeficiente de reflexión está relacionado con la presión y la velocidad en x = 0 como:

p(x)|x=0 = 1 +R, (3.51)

vx(x)|x=0 =
1−R

Zeff
, (3.52)

dónde Zeff es la impedancia acústica característica efectiva de la cavidad en Rayls o Pa·s/m.
Combinando las ecuaciones 3.49 y 3.50 con 3.51 y 3.52:

T11 p(x)|x=L = 1 +R −→ p(x)|x=L =
1 +R

T11
,

T21
1 +R

T11
=

1−R

Zeff
−→ T21Zeff

T11
=

1−R

1 +R
.
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Por lo que despejando, el coeficiente de reflexión es:

R =
T11 − T21Zeff
T11 + T21Zeff

. (3.53)

El coeficiente de absorción se relaciona con el coeficiente de reflexión (cuando no existe
transmisión) como:

α = 1− |R|2. (3.54)

3.1.5. Cálculo del scattering polar en campo lejano
Para obtener la respuesta de un difusor en campo lejano debemos ubicarnos en la zona de

Fraunhofer, r → ∞. Para ello, teniendo el coeficiente de reflexión se realiza la integración del
campo lejano tal que:

ps(θ, ϕ) =

a/2∫
−a/2

b/2∫
−b/2

R(x, y)eik(x sinϕ sin θ+y sinϕ cos θ)dxdy, (3.55)

dónde a y b son los tamaños de lado del difusor completo, θ el ángulo azimutal, ϕ el ángulo
de elevación, k es el número de onda y R(x, y) es el coeficiente de reflexión en la posición x, y
del difusor.

Como se puede observar, el cálculo es equivalente a una transformada de Fourier discreta
bidimensional de la matriz de coeficientes de reflexión R.

3.1.6. Cálculo de los parámetros de difusión y scattering
El cálculo de la difusión y el scattering a partir de medidas experimentales se debe realizar

siguiendo la metodología y operaciones definidas en las normas:

• Difusión: ISO 17497-2:2012 - Sound-scattering properties of surfaces – Part 2: Measu-
rement of the directional diffusion coefficient in a free field.

• Scattering: ISO 17497-1:2004 - Sound-scattering properties of surfaces – Part 1: Mea-
surement of the random-incidence scattering coefficient in a reverberation room.

En el caso del scattering, la norma se aplica en medidas en campo reverberante, cuando
se tienen medidas o cálculos en campo libre, como en este trabajo, se debe utilizar el cálculo
definido por Mommertz (2000).

A continuación se resumen los cálculos necesarios para obtener los coeficientes, para más
detalles se recomienda la consulta de las normas y el trabajo de Mommertz.

3.1.6.1. Coeficiente de difusión

El cálculo del coeficiente de difusión se puede realizar de dos modos dependiendo de si los
puntos de medida se han posicionado en un único plano a lo largo de un semicírculo (un solo
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ángulo de elevación) o mediante una semiesfera (múltiples ángulos de elevación y azimuth),
en este último caso se debe realizar una corrección de área debido a que la superficie del
difusor vista por el receptor varía en cada punto.

Cálculo para medidas sobre un plano

dθ =

(
n∑

i=1

10Li/10

)2

−
n∑

i=1

(
10Li/10

)2
(n− 1)

n∑
i=1

(
10Li/10

)2 , (3.56)

dónde Li es el nivel de presión en el punto de medida i-ésimo y n es el número de puntos de
medida.

Cálculo para medidas sobre una semiesfera

dθ =

(
n∑

i=1

10Li/10

)2

−
n∑

i=1

(
10Li/10

)2
(

n∑
i=1

(Ni)− 1

)
n∑

i=1

(
10Li/10

)2 , (3.57)

dónde Li es el nivel de presión en el punto de medida i-ésimo y Ni es el factor de corrección
de área para el punto de medida i-ésimo:

Ai =
4π

∆ϕ
sin2

(
∆θ

4

)
, θ = 0◦, (3.58)

Ai = 2 sin(θ) sin
(
∆θ

2

)
, θ ̸= 0◦, |θ| ̸= 90◦, (3.59)

Ai = sin
(
∆θ

2

)
, |θ| = 90◦, (3.60)

Ni =
Ai

Amin
, (3.61)

dónde ∆ϕ (azimuth) y ∆θ (elevación) son los incrementos de ángulo entre cada punto de
medida, θ es el ángulo de elevación del punto i-ésimo y Amin es el valor mínimo obtenido del
cálculo completo desde θ = 0◦ hasta |θ| = 90◦.
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Coeficiente normalizado

El valor del coeficiente de difusión de un difusor debe normalizarse para que finalmente se
obtenga valor igual a 1 donde produzca mayor difusión y 0 donde no la produzca. Esto se
realiza obteniendo el coeficiente de difusión de un panel plano de las mismas dimensiones del
difusor y operando tal que:

dθ,n =
dθ − dθ,r
1− dθ,r

, (3.62)

dónde dθ,r es el coeficiente de difusión de un panel plano (referencia).
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Figura 3.4: De izquierda a derecha: a) Coeficiente de difusión de un periodo de QRD con N = 7
y frecuencia de diseño de 1000 Hz; b) Coeficiente de difusión de un panel plano de las
mismas dimensiones que el QRD (24 cm de lado); c) Coeficiente de difusión normalizado
del QRD.

3.1.6.2. Coeficiente de correlación del scattering

Como se ha comentado al inicio, el cálculo del coeficiente de correlación del scattering se
realiza tal como lo define Mommertz (2000).

Cálculo para medidas sobre un plano

δ = 1−

∣∣∣∣∣
n∑

i=1

p1(θi)p
∗
0(θi)

∣∣∣∣∣
2

n∑
i=1

|p1(θi)|2
n∑

i=1

|p0(θi)|2
, (3.63)

dónde p1 es la presión reflejada por el difusor, p0 la presión reflejada por un panel plano, el
∗ indica que es el conjugado complejo, n es el número de puntos de medida y θi es el ángulo
de elevación del punto de medida i-ésimo.
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Cálculo para medidas sobre una semiesfera

δ = 1−

∣∣∣∣∣∣
n∑

i=1

m∑
j=1

p1(θi, ϕj)p
∗
0(θi, ϕj)

∣∣∣∣∣∣
2

n∑
i=1

m∑
j=1

|p1(θi, ϕj)|2
n∑

i=1

m∑
j=1

|p0(θi, ϕj)|2
, (3.64)

dónde p1 es la presión reflejada por el difusor, p0 la presión reflejada por un panel plano, el ∗

indica que es el conjugado complejo, n es el número de puntos de medida en elevación, m es
el número de puntos de medida en azimuth, θi es el ángulo de elevación del punto de medida
i-ésimo y ϕj es el ángulo de azimuth del punto de medida j-ésimo.

3.1.7. Diseño QRD de fracción de longitud de onda (subwavelength)

El diseño de fracción de longitud de onda permite aprovechar una de las virtudes de lo
metadifusores, menores tamaños no implican eficiencias menores en las frecuencias deseadas,
tal como se ha visto en el ejemplo del punto 2.4.8.

El diseño QRD estándar (2.4.1) puede ser modificado para poder trabajar con dimensiones
menores a λ/2.

En primer lugar se obtiene la secuencia numérica normalizada (0,1):

snnorm =

(
n2N

)
N − 1

, sn,mnorm =

((
n2 +m2

)
N
)

N − 1
. (3.65)

0.33 0.66 0.16 0.16 0.66 0.33

Figura 3.5: Un periodo unidimensional de la secuencia QRD de fracción de longitud de onda con
N = 7.

A continuación se obtiene la profundidad máxima y esta se multiplica por la secuencia
numérica normalizada para obtener las profundidades de las cavidades.

dmax =
λini
Nλ

, (3.66)

dn = snnormdmax, dn,m = sn,mnormdmax, (3.67)

dónde λini es la longitud onda inicial del diseño y Nλ es la fracción de la longitud de onda
(2,3,4,...).
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0.38 0.76 0.19 0 0.19 0.76 0.38

Figura 3.6: Profundidades en centímetros de un QRD unidimensional de fracción de longitud de
onda con N = 7, Nλ = 30 y una frecuencia inicial de 1000 Hz.

El tamaño final del difusor completo puede definirse inicialmente y por tanto las dimen-
siones de las cavidades dependen de ese tamaño tal que:

w =
W

Nnrep
, (3.68)

dónde W es el ancho total del difusor en metros y nrep es el número de periodos de la
secuencia.

3.2. Cálculo numérico

Para el cálculo de problemas físicos que dependen del tiempo y el espacio es necesario
utilizar ecuaciones en derivadas parciales o EDP, generalmente este tipo de ecuaciones no son
resolubles con métodos analíticos por lo que se recurre a los métodos numéricos. Los métodos
numéricos discretizan el problema y resuelven a base de aproximaciones la solución real de
las EDP. El método de los elementos finitos, MEF o FEM en inglés, se utiliza para realizar
esas aproximaciones. Aquí no se va a explicar toda la problemática y los detalles del método
numérico, para profundizar en ello se recomienda el trabajo realizado por Zuazua (2009).

El método de los elementos finitos, como ya se ha comentado, resuelve las EDP mediante
aproximaciones, para el ejemplo mas simple (una dimensión) esto se expresa matemática-
mente como:

u ≈ uh, uh =
∑
i

uixi, (3.69)

dónde u es la solución exacta, uh la solución aproximada, ui es el coeficiente de un punto
i-ésimo y xi el valor básico del punto i-ésimo.

Como se puede observar (figura 3.7), a mayor discretización mayor aproximación a la
solución real pero aumenta el número de operaciones. Es posible aumentar esa discretización
solo en ciertos rangos de interés para no aumentar los puntos de calculo globalmente. Esta
discretización se denomina mallado de puntos y es el que define en que puntos de una curva,
superficie o volumen se deben realizar los cálculos.
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u0

u1

u2 u3

u4

u5

Figura 3.7: Función u(x) discretizada mediante FEM.

Estos cálculos se vuelven más complejos a medida que aumentan las dimensiones y aumen-
tan cuanto más puntos discretos se desean obtener, es por ello que el método de los elementos
finitos es inabarcable si no se utiliza un ordenador y programas dedicados a este cometido.
En este trabajo se ha utilizado COMSOL Multiphysics© para realizar el cálculo numérico.

3.2.1. Herramienta COMSOL©

Para realizar el modelo con COMSOL©, ademas de definir las geometrías es necesario
seleccionar las características acústicas y las mecánicas (placas o membranas y cavidades).

Características acústicas Para definir las características acústicas se debe utilizar el módulo
de presión acústica con la interfaz para el dominio en frecuencia. Dentro de este módulo se
debe configurar el campo de presión acústica de fondo, que define la onda plana que incidirá
sobre la geometría perpendicularmente. También se deben definir el resto de características
de presión (presión ambiental) y del medio (aire).

Características mecánicas En este caso el módulo necesario es el de mecánica de estructu-
ras. Para la placas se definen los parámetros viscoelásticos del material y en el caso de las
paredes de las cavidades estos parámetros se definen idealmente rígidos.

Multifísica Para la interacción de la aeroacústica y la vibroacústica es necesario incluir un
módulo de multifísica que combine las características viscotérmicas del medio y las viscoelás-
ticas de las placas.
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Figura 3.8: Modelo QRD con placas realizado con FEM en COMSOL©.

3.3. Optimización
La optimización de un diseño permite, a partir de unos parámetros iniciales, obtener los

mejores resultados para un objetivo definido. Definiendo los requisitos (frecuencias en las
que se busca obtener la máxima difusión) y mediante algoritmos de optimización se puede
obtener el mejor diseño dentro de los márgenes definidos. La optimización se puede realizar
mediante un algoritmo de optimización, valga la redundancia, que a rasgos generales se puede
simplificar como el diagrama de la figura 3.9.

Inicio

Profundidad de las
cavidades aleatoria

Calcular respuesta
en campo lejano

Calcular el coeficiente
de difusión

Modificar las profundidades
de las cavidades

¿Cumple los requisitos o no
mejora más?

Fin

No

Si

Figura 3.9: Diagrama de flujo para optimizar un difusor de Schroeder.

En el diagrama 3.9 se puede aumentar la complejidad para obtener, en ocasiones, mejores
resultados cambiando no solo las profundidades sino también los espesores de placa y el
tamaño de lado de las cavidades.

Para la optimización, en este trabajo, se trata de minimizar la función de coste u objetivo:
f(ωi) = 1−di, donde di es el coeficiente de difusión para la frecuencia i-ésima, cuando solo se
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busca la optimización para una frecuencia esta optimización se denomina de objetivo único
y si se realiza para múltiples frecuencias pasa a denominarse de multiobjetivo. También es
necesario determinar los limites inferiores y superiores de las variables de diseño que se vayan
a optimizar (profundidades, espesores y/o tamaño de cavidad).

Los algoritmos utilizados en este trabajo son los implementados por MATLAB© en su Op-
timization Toolbox. En concreto para el caso de las optimizaciones de objetivo único se han
utilizado los algoritmos fmincon y ga, y en el caso de multiobjetivo fminimax y gamultiobj.
La utilización de dos algoritmos para la misma optimización permite comprobar si efectiva-
mente se ha obtenido la solución más óptima.

3.3.1. Optimización de objetivo único
La optimización de objetivo único busca minimizar una única variable de salida de la fun-

ción objetivo, esto es útil en el caso de que se busque una optimización en una sola frecuencia o
para múltiples frecuencias en conjunto modificando la función de coste a f = (

∑n
i 1− di) /n,

si se desea optimizar para múltiples frecuencias individualmente se debe utilizar la optimiza-
ción multiobjetivo explicada en el punto 3.3.2.

El primero de los dos algoritmos de objetivo único utilizados es fmincon, que trata de
minimizar el valor de la función f(ω) a partir de unos valores iniciales de diseño basándose en
las condiciones KKT, desarrolladas por Kuhn y Tucker (1951) a partir del trabajo de Karush
(1939). La descripción completa del método se puede encontrar en Byrd y cols. (2000) y
Waltz y cols. (2005).

Una vez se alcanza el mínimo de la función (valor 0) o se alcanza el limite de iteraciones
(elegido arbitrariamente) se obtienen los mejores parámetros de diseño para la frecuencia
buscada.

El segundo, ga, es un algoritmo genético (Holland, 1975), este algoritmo parte de unos
valores aleatorios con los que genera una serie de posibles soluciones y prueba la función de
coste f(ω) con estas, de las posibles soluciones se cruzan las peores y las mejores para obtener
otras posibles soluciones que pueden ser mejores o peores, finalmente se descartan las peores
y las mejores se mutan, es decir, se modifican sus variables (profundidad, espesor y/o tamaño
de cavidad). Una vez se alcanza el limite de iteraciones se selecciona la mejor solución.

3.3.2. Optimización multiobjetivo
Este tipo de optimización es útil cuando se busca minimizar una función que tiene múl-

tiples variables de salida. En nuestro caso, si se desea optimizar el difusor para múltiples
frecuencias se debe analizar los coeficientes de difusión de cada una de las frecuencias por
separado para conseguir finalmente la mejor opción posible para todas ellas simultáneamente.

El algoritmo fminimax se basa en un algoritmo muy utilizado en teoría de juegos, el Mini-
Max (Brayton y cols., 1979). Lo que realiza es la búsqueda del mínimo de los máximos valores
de salida de la función de coste, es decir, si se ejecuta la optimización para tres frecuencias la
función de coste tiene 3 variables de salida, que todas ellas se intentan minimizar a 0, de esas
tres variables se escoge la maxima y si ese valor no es 0, el algoritmo sigue buscando posibles
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soluciones hasta llegar a valor 0 o al límite de iteraciones. Debido a su funcionamiento en
la mayoría de las ocasiones obtiene el mismo valor para todas las variables de salida de la
función de coste, es decir, para el ejemplo de las tres frecuencias generalmente obtendrá un
diseño que ofrezca el mismo valor de difusión para todas ellas.

El algoritmo gamultiobj, es un algoritmo genético como el explicado en el punto ante-
rior con la salvedad de que se obtienen múltiples soluciones óptimas. De estas soluciones
optimas se debe elegir una a partir criterios menos matemáticos o físicos como puede ser la
viabilidad/coste de producción debido a las dimensiones propuestas.



4. Resultados

En este punto se va a mostrar la validez del modelo teórico o analítico (TMM) realizando
comparaciones con el mismo modelo realizado con FEM. Después se mostraran los resultados
de dos diseños de difusor, estándar y subwavelength, con y sin placa. Por último se han
realizado algunas optimizaciones para mostrar las posibilidades del diseño de difusores con
resonadores de placa.

Las características de los materiales utilizados en los cálculos se muestran en el anexo A.1.

4.1. Validación del método analítico
Para validar el modelo analítico (TMM) desarrollado en este trabajo (punto 3.1) se ha

comparado el mismo modelo realizado con FEM. Se han realizado comparaciones tanto de
una cavidad simple con placa como de un QRD con placa.

4.1.1. Cavidad simple con placa

Figura 4.1: Modelo de una cavidad con placa realizado con FEM en COMSOL.

Para comparar los resultados de una cavidad simple con placa se analiza el coeficiente de
reflexión, concretamente su fase.

Figura 4.2: Comparación TMM y FEM de la fase de la reflexión de una cavidad de 4cm de lado y
4cm de profundidad con placa de 0.1mm de espesor.

41
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Como se puede observar en la figura 4.2 los cambios de fase del coeficiente de reflexión
coinciden aunque, según aumenta la frecuencia, la fase en FEM se retrasa. Estos resultados
son esperanzadores por lo que se procede a comparar un difusor completo y verificar así la
validez del modelo.

4.1.2. QRD con placa

Figura 4.3: Modelo QRD con placas realizado con FEM en COMSOL.

Los diagramas polares en campo lejano del scattering son muy similares como se puede ob-
servar en la figura 4.4. Las pequeñas diferencias se deben mayoritariamente a la construcción
del modelo FEM, donde se producen reflexiones en los contornos laterales no contemplados
en el modelo analítico.

(a) (b)

(c) (d)

Figura 4.4: QRD de un periodo con N = 7, f0 = 1 kHz y placas de 0.1 mm de espesor: a) 1 kHz. b)
2 kHz. c) 4 kHz. d) 8 kHz. El color azul es el modelo analítico y el rojo el modelo FEM.



4.2. Comparaciones con y sin placa 43

Por lo tanto, tal como se ha visto en las comparaciones, tanto de una cavidad como de un
difusor completo, se puede asegurar que el modelo analítico está validado y que puede ser
utilizado para continuar con el estudio de este trabajo.

4.2. Comparaciones con y sin placa
Para analizar el efecto en una cavidad al incorporar la placa se ha procedido a analizar por

un lado la frecuencia de resonancia frente a la profundidad de la cavidad, tanto con placa como
sin ella (figura 4.5) y por otro lado la fase del coeficiente de reflexión para 3 profundidades
diferentes también con y sin placa (figura 4.6). En todos los casos se ha elegido un tamaño
de lado de la cavidad de 5 cm.

Figura 4.5: Frecuencia de resonancia frente a profundidad de cavidad con y sin placa.

En la figura 4.5 se muestra la frecuencia de resonancia frente a la profundidad, la línea
discontinua representa la frecuencia de resonancia de la placa que, como no cambia su espesor
ni características, es siempre la misma (127 Hz). La linea de puntos representa las frecuencias
de resonancia de la cavidad cuando no se incorpora la placa y la línea negra cuando si hay
placa. Como se puede observar la frecuencia de resonancia de la cavidad con placa desciende
drásticamente tendiendo a la resonancia de la placa según aumenta la profundidad.

Figura 4.6: Fase del coeficiente de reflexión para diferentes profundidades de cavidad con y sin placa.

Analizando la fase del coeficiente de reflexión (figura 4.6) se observa que una cavidad sin
placa de gran profundidad, 20 cm, tiene una resonancia baja pero al incorporar la placa aun
se reduce más, casi a la mitad. En el caso contrario con una cavidad de poca profundidad,
2 cm, mientras que la cavidad sola tiene una resonancia muy alta (fuera del eje, 4276 Hz) y
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la placa sola tiene una resonancia de 127 Hz, el conjunto produce la primera resonancia en
los 807 Hz, es decir, la inclusión de la placa ha reducido algo más de 5 veces la frecuencia de
resonancia de la cavidad.

4.3. Distribución de cavidades de residuo cuadrático
A continuación se muestran los resultados obtenidos con un difusor con placas de residuo

cuadrático diseñado con los dos métodos, el estándar (2.4.1) y el de fracción de longitud de
onda (3.1.7).

4.3.1. Estándar
El diseño estándar explicado anteriormente presenta buenos resultados cuando no se incor-

poran las placas como se puede observar en la figura 4.7. Las profundidades de cada cavidad
son las mismas que se muestran en la explicación del diseño QRD (figura 2.9b).

Figura 4.7: Coeficiente de difusión y scattering de un difusor QRD con y sin placa. Con N = 7,
f0 = 1 kHz y tamaño de cada cavidad de 10 cm.

Figura 4.8: Fase del coeficiente de reflexión en cada cavidad y patrón polar en campo lejano de un
difusor QRD, con y sin placa, y un panel plano a 1.2 kHz. Con N = 7, f0 = 1 kHz y
tamaño de cada cavidad de 10 cm.

4.3.2. Subwavelength
En este caso se ha utilizado el diseño de fracción de longitud de onda explicado en el punto

3.1.7. Los parámetros de diseño son: N = 7, f0 = 1 kHz, Nλ = 40 y w = 10 cm.
Mediante este diseño se consigue que el espesor del difusor no supere el centímetro, 0.9 cm,

un espesor mucho menor de lo esperado en un difusor QRD, en concreto, el espesor se reduce
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13.7 cm. La difusión y el scattering obtenidos con este diseño tanto con placa como sin ella
se encuentran representados en la figura 4.9.

Figura 4.9: Coeficiente de difusión y scattering de un difusor de fracción de longitud de onda con y
sin placa (QRD). Con N = 7, f0 = 1 kHz, Nλ = 40, profundidad máxima de 0.9 cm y
tamaño de cada cavidad de 10 cm.

Figura 4.10: Fase del coeficiente de reflexión en cada cavidad y patrón polar en campo lejano de un
difusor QRD subwavelength, con y sin placa, y un panel plano a 2 kHz. Con N = 7,
f0 = 1 kHz, Nλ = 40, profundidad máxima de 0.9 cm y tamaño de cada cavidad de 10
cm.

4.4. Optimización de un difusor con resonador de placa

Se han realizado múltiples optimizaciones todas ellas con resultados excelentes, a continua-
ción se muestran tres propuestas de diseño optimizadas mediante la optimización multiobje-
tivo. En todos los diseños se han optimizado profundidades y tamaño de cavidad.

Los parámetros iniciales de diseño se han obtenido a partir de los cálculos desarrollados en
el punto 3.1.7 sobre el diseño de fracción de longitud de onda o subwavelength. Y los límites
de diseño introducidos a los algoritmos de optimización son 0 < dn < dmax (profundidad) y
0.03 < w < 1/N (tamaño de cavidad), utilizando 1/N se asegura un tamaño total del difusor
no superior a 1 metro. Las placas tienen todas el mismo espesor, 0.1 cm.
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Figura 4.11: Coeficientes de difusión y scattering obtenidos por 3 diseños de difusor con resonadores
con placa optimizados.

Las características de cada optimización son las siguientes:

Optimización
Frecuencias de

optimización [Hz]
N f0 [Hz] Nλ dmax [cm] w [cm]

1 200, 300, 400, 800, 900 7 100 20 17.12 14.29

2 400, 500, 600, 700 7 150 40 5.71 12.77

3
900, 1000, 1100, 1200,

1300, 1400, 1500, 1600
7 500 40 1.71 6.06

Tabla 4.1: Características de las optimizaciones, donde: N es el numero primo generador, f0 es la
frecuencia de diseño, Nλ es la fracción de longitud de onda, dmax es el espesor del difusor
y w es el tamaño de lado de las cavidades.

17.12 17.12 0.00 7.48 0.00 17.12 17.12

17.12 0.00 1.65 1.75 1.68 0.00 17.12

0.00 1.56 2.05 4.21 4.27 1.66 0.00

1.40 1.58 4.18 4.12 4.00 1.81 17.12

1.04 1.53 4.23 4.07 2.06 1.78 0.00

17.12 17.12 1.66 1.86 1.78 0.00 17.12

17.12 17.12 0.00 0.00 0.00 17.12 17.12

(a) Profundidades (cm).
(b) Modelo.

Figura 4.12: Profundidades y modelo 3D de la optimización 1. Con N = 7, f0 = 100 Hz, Nλ = 20,
dmax = 17.12 cm y w = 14.29 cm.
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5.71 5.71 5.71 0.00 5.71 5.71 5.71

5.71 0.00 0.00 0.00 0.00 0.00 5.71

0.00 0.00 2.14 2.17 2.15 0.00 5.71

5.71 0.00 2.16 2.20 2.16 0.00 0.00

5.71 0.00 2.12 2.15 2.11 0.00 5.71

5.71 0.00 0.00 0.00 0.00 0.00 5.71

5.71 5.71 5.71 0.00 5.71 5.71 5.71

(a) Profundidades (cm).

(b) Modelo.

Figura 4.13: Profundidades y modelo 3D de la optimización 2. Con N = 7, f0 = 150 Hz, Nλ = 40,
dmax = 5.71 cm y w = 12.77 cm.

0.69 0.50 1.71 1.63 1.52 1.32 1.31

0.65 0.54 1.71 1.66 1.19 1.05 0.95

0.64 0.55 1.71 1.71 0.84 0.48 0.71

0.88 0.56 0.53 0.52 0.51 0.49 0.48

1.66 1.71 0.51 0.52 0.52 0.68 0.74

1.58 1.67 1.71 0.50 0.64 0.77 1.04

0.99 1.56 0.47 0.49 1.38 0.95 1.35

(a) Profundidades (cm).

(b) Modelo.

Figura 4.14: Profundidades y modelo 3D de la optimización 3. Con N = 7, f0 = 500 Hz, Nλ = 40,
dmax = 1.71 cm y w = 6.06 cm.





5. Conclusiones

Hoy en día se sigue investigando con intensidad sobre los difusores acústicos, nuevos di-
seños derivados de los diseños de Schroeder o basados en metamateriales por ejemplo. La
mayoría de investigaciones tratan de mejorar prestaciones sin preocuparse en demasía por
las dimensiones del difusor, algo que si ocurre en casi la totalidad de los estudios de difuso-
res basados en metamateriales, buscando reducir las dimensiones consiguiendo al menos las
mismas prestaciones que otros difusores, que es justo donde se encuadra este trabajo.

En primer lugar se realizaron modelos analíticos sin pérdidas de difusores con y sin placas,
se observó que los resultados tenían coherencia con lo esperado por lo que se procedió a
realizar los modelos en FEM para verificar esa coherencia, y sí, los resultados eran similares
por lo que se implementó el cálculo de las pérdidas viscotérmicas y viscoelásticas en los
modelos analíticos. Como se ha podido ver en los resultados, los modelos analíticos y FEM
son muy similares, con cierta diferencia de fase en el coeficiente de reflexión que será analizada
en mayor profundidad en el futuro para mejorar el modelo analítico.

Los difusores con placa que se proponen en este trabajo han demostrado que permiten ma-
ximizar los parámetros de difusión con un espesor mucho menor que los diseños tradicionales.

También se ha podido observar que las optimizaciones arrojan resultados excepcionales en
un ancho de banda limitado, dependiendo de la optimización, alrededor de una octava como
sucede con un difusor MLS, es posible que utilizando otros materiales este ancho sea mayor o
menor, es necesaria una investigación más profunda para encontrar las diferentes relaciones
entre materiales y difusión.

Las ecuaciones implicadas en todo el cálculo de las cavidades y placas es complejo además,
la implicación de las placas en los metamateriales continúa en investigación como se puede
ver en el trabajo de Huang y cols. (2016), es por ello que los resultados de este trabajo no
pueden ser tomados como definitivos sin realizar prototipos y medir la respuesta de estos
para comprobar si se obtiene la misma difusión.

5.1. Líneas futuras
Además, aparte de geometrías cuadradas sería interesante estudiar los resultados con ca-

vidades rectangulares, circulares o cualquier otra que pueda ser calculada analíticamente.
Es por todo ello, que este trabajo deja las bases para un estudio mucho más detallado en

el que se podría profundizar en diferentes aspectos:

• Diseños diferentes al QRD.

• Cavidades con otras formas geométricas.

• Ubicar las placas dentro de las cavidades y no en el extremo, probando la colocación a
diferentes profundidades dentro de la cavidad.
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• Otros materiales o combinación de ellos (placas de diferentes características en un mismo
difusor).

• Prototipado de modelos y su posterior medida en cámara anecóica para comparar con
los modelos analíticos y numéricos.
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A. Datos adicionales de los resultados

A.1. Características físicas de las placas elásticas y del medio
Los parámetros utilizados en los cálculos teóricos y numéricos tanto para el medio (aire)

como para las placas elásticas (PMMA) son los siguientes:

Medio (aire)

ρ = 1.21 [kg/m3]. Densidad.

P0 = 101325 [Pa]. Presión atmosférica.

γ = 1.4. Proporción de calores específicos.

Pr = 0.71 [Cpµ/k]. Número de Prandtl.

µ = 1.839e-5 [Pa·s]. Viscosidad dinámica.

c0 =
√
γP0/ρ [m/s]. Velocidad del sonido

Placas (PMMA)

ρ = 1320 [kg/m3]. Densidad.

σρ = 0.1. Factor de pérdidas por la densidad.

E = 4.1e9 [Pa]. Módulo de Young.

σE = 1000. Factor de pérdidas por el módulo de Young.

ν = 0.39. Coeficiente de Poisson.
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